Basic Image Editor using Tkinter GUI
EE 610: Image Processing: Assignment 1

Shreyas Nadkarni, 19D170029
Department of Electrical Engineering
IIT Bombay
Mumbai, India
19D170029 @iitb.ac.in
Under the guidance of Prof. Amit Sethi, EE610 Instructor, Department of Electrical Engineering, IITB

Abstract—This work is a part of the course EE 610: Image
Processing, running in Autumn 2021. An image enhancer applica-
tion has been designed using the tkinter framework of Python, to
carry out various image transformations on a custom image. This
report summarises the details of the GUI design, functionality,
and overall approach used for the task, along with some examples
which highlight the importance of the respective operations.

I. INTRODUCTION

The objective of this assignment is to design an interactive
application to process and enhance an image. The user can
browse and select an image from their device and display
it in the GUIL They can then transform the image using
operations namely histogram equalization, gamma correction,
logarithmic transformation, blurring, sharpening and binary
thresholding. Several buttons have been designed to choose the
operation and these can be performed sequentially. To reverse
the operation(s), "Undo” and “Undo All” buttons have been
designed. The code comprises several functions which have
been written for each specific operation and for other tasks
like browsing, undoing and saving the image. The main block
of code defines a tkinter window which launches the main
window of the GUI containing the display area and the buttons.
The design of the GUI and calls to each function have been
made in this main code. The details of the design, operations,
experiments and results have been presented in this report.

II. GUI DESIGN

The GUI window contains two parts, one is the panel for
displaying the image (henceforth called ’panel’ and the other
one is a frame for placing the buttons (henceforth called
“buttonframe’). The buttonframe contains the buttons namely:
Browse, Save As, Undo, Undo All, Equalize Histogram,
Gamma Correction, Log Transform, Blur, Sharpen, Threshold,
and then a label displaying the last action performed on
the image, followed by some text giving instructions to the
user. The actions for browsing, saving, undoing, undoing all,
log transformation and histogram equalization use a single
function which is called after the button is pressed. The other
operations need the user to input some parameter (like the
cutoff for thresholding) so they have been designed using two
functions each, one for creating a new window and prompting

Browse

Save As

Undo

Undo All

Equalize Histogram

Gamma Correction

Log Transform

Blur

Sharpen

Threshold

Last Action:
No Action

Click the Brouse
button to select an
image from your
system, apply the
necessary
transformations and
then save the image
using the Save fis
button.

Fig. 1: The frame designed for buttons

the user to input the value while the other for using the value
and carrying out the operation.

III. IMAGE PROCESSING OPERATIONS

A. Histogram Equalization

This operation increases the contrast in an image by equaliz-
ing the histogram of the pixel values in the image so that each
part of the spectrum has sufficient pixels. The transformation
used is the discrete analog of the histogram equalization

performed in continuous domain.

sp=T(ry)=(L—-1) x pr(rj) (D

-

Jj=0

where r; is the old pdf value of the jth pixel value and sy,
is the corresponding new pixel value of the k** pixel. L is
the number of possible intensity levels in the image (here L
= 256)

B. Gamma Correction

This is a transformation in which the pixel values are are
raised to a power v where the value of + is user defined. The
pixels are scaled to values between 0 and 1, and can be later
re-scaled to [0, 255] after the transformation.

s=cr” 2

where 7 is the old pixel value, s is the new pixel value, and
c is an optional scaling factor. In this assignment, ¢ has been
kept equal to 1, and scaling has been applied but not inside
the operation itself.

C. Log Transformation

This applies a logarithmic function on the pixel values so
that the intensity values (scaled to be between 0 and 1) rise.
They can then be scaled back to [0, 255]

s=cxlog(l+r) 3)

Here, ¢ is chosen to be ﬁ so that the output values are
between zero and 1. After this transformation they are further
scaled using a factor of 255, for displaying the image

D. Blurring

Blurring of the image has been implemented using convolu-
tion with a box filter whose size is input by the user. The kernel
size is stored in a variable named ksize and a zero padding of
width % is applied to the original image, before carrying
out the convolution. The larger the kernel size, the stronger is
the blur, because a larger kernel takes more surrounding pixels
into account while finding the output value of one particular
pixels, resulting in stronger blurring on the whole.

E. Sharpening

Sharpening of the image has been implemented by unsharp
masking. The image is first blurred using a 9x9 box filter,
then the blurred image is subtracted from the original image
to create a “mask” and then this mask is added with a weight
’c’ to the original image. The weight ’¢’ can be input by the
user.

m(m,y) = f(.%‘, y) - fblur(xvy) “4)

9(x,y) = f(z,y) + ¢ x m(z,y) &)

where f(x,y) is the original image, [y, is the blurred image,
m(z,y) is the mask, and g(z,y) is the output (sharpened)
image.

F. Binary Threshold (extra operation)

This operation sets each pixel value equal to the minimum
(0: black) or to the maximum (255: white) depending on
whether it is less than the cutoff or greater than he cutoff.
The cutoff value here is input by user. Preferably the image
should be gray-scaled, otherwise the colours for the minimum
and maximum will depend on the hue and saturation values
in the HSV image.

IV. EXPERIMENTS AND RESULTS

Some custom images were chosen and the enhancer was
tested on these. Different images have been chosen to show the
utility of each operation. The GUI Window looks as follows:

Browse
Save As
Undo
Undo ALl
Equalize Histogram

Gamma Correction

Log Transform
Blur
Sharpen

Threshold

Last Action:

Browse

Fig. 2: The Image Enhancer Window

A. Histogram Equalization and Sharpening

Histogram equalization increases the contrast in a low
contrast image while sharpening (unsharp masking with ¢ =
1) helps us to see the finer details in more detail, however it
introduces some artefacts towards the edges. A low contrast
image has been chosen to show the use of these two operations.

Fig. 3: Original

(a) Original (b) After series of Log Trans-
forms

Fig. 5: Sharpened with ¢ = 1

B. Gamma Correction (a) Original (b) Blurred

Gamma correction with a gamma;1 darkens the overall
image and increases the contrast in the dark regions, while
that with gammajl increases the contrast in the bright parts
and brightens the overall image.

advertisements, cartoons, etc. The following image has been
gamma corrected by 4 and the thresholded with a cutoff of
127, to get a ’silhouette’ of a city.

(a) Original (b) Gamma =4 (c) Gamma = 0.5

C. Log Transformation

This looks similar to gamma correction with gamma 1. It
lightens the image and increases contrast in the light parts.

D. Blurring e g 5

This can be used for tasks like de-wrinkling where we Fig. 9: Original
want to hide some intricate details. In the following image,
after blurring with a 3x3 kernel, some wrinkles seem to have

reduced leading to the person appearing younger. E. Series of Transforms for Enhancing

The following image has a lot of glow due to the sun and

E. Thresholding the parts of the background like the buildings and the trees
Thresholding an image converts it to a black and white im- are not very clearly visible. To enhance this image, we apply
age which can be used for various applications like designing, a gamma correction of 4 (which reduces the ’glow’), then

Fig. 10: Thresholding with cutoff = 127 after Gamma Correc-
tion with gamma = 4

a log transform twice (which brightens it overall again) and
then equalize the histogram to get the final image in which all
aspects are clearer: people, tress, leaves on the road, buildings,
etc.

—

e ; S
Fig. 11: Original

Fig. 12: Enhanced

V. CONCLUSION AND DISCUSSION

Thus, an image editor application has been implemented
using tkinter and other Python libraries. The image pro-
cessing operations have been written without using built-in
functions from Open-CV, and have been implemented using
only Numpy, which gives a feel of how they are actually
implemented mathematically. The challenges faced during the
assignment were that of GUI design and interfacing it with
the operations using Pillow and tkinter functions, since this
was the first time I did GUI Programming. Given more time,
I would have liked to implement more functionality such as
increasing and decreasing the blurring extent in real time
(which would need increasing the efficiency of the operation)
and other advanced techniques such as frequency domain
filtering for denoising, etc.

REFERENCES
[1]

[2]
[3]
[4]
[5]

Digital Image Processing: 4th Edition, Rafael C. Gonzalez, Richard E.
Woods

https://www.geeksforgeeks.org/python-gui-tkinter/
https://www.tutorialspoint.com/python/python_gui_programming.html
https://www.pyimagesearch.com/2016/05/23/opencv-with-tkinter/
https://stackoverflow.com/questions/57033158/how-to-save-images-
with-the-save-button-on-the-tkinter-in-python
https://www.geeksforgeeks.org/file-explorer-in-python-using-tkinter/
https://stackoverflow.com/questions/10133856/how-to-add-an-image-in-
tkinter

[6]
[7]

