
Image Enhancer using Super-Resolution, Edge
Detection and Morphological Operations

Project report for IITB EE610 Image Processing 2021

Shreyas Nadkarni
Dept of Electrical Engineering

IIT Bombay
Mumbai, India

19D170029@iitb.ac.in

Tushar Nandy
Dept of Electrical Engineering

IIT Bombay
Mumbai, India

190020125@iitb.ac.in

Vinamra Baghel
Dept of Electrical Engineering

IIT Bombay
Mumbai, India

190010070@iitb.ac.in

Abstract—This project has been done as a part of the course
EE610: Image Processing (Autumn 2021 offering), under Prof.
Amit Sethi, Dept of Electrical Engineering, IIT Bombay. An
application for editing and enhancing an image based on edge
detection algorithms, morphological operations and a Deep-
Learning based super-resolution approach has been designed.
This report gives a lucid explanation of the background and
methodology behind the work, the experimental observations
using the tool, and an overview of this project.

I. INTRODUCTION

In the digital era of computers and smart phones, images
are seen everyday. Image enhancement is a set of techniques
applied to an image to emphasize certain aspects of an image
for better understanding. The techniques may be applied to
whole or a part of the image. These techniques are particularly
useful in forensic and police investigation, pathology, medical
diagnosis, satellite imaging and data extraction as well as in
exploration of marine resources.

Edge detection is a set of mathematical operations per-
formed on an image to highlight borders between segments
of distinct contrast and color. There is often a sharp change of
values across these edges. This method is motivated by the 1-
dimensional ”step-detection” in signals. A common approach
includes calculating the gradient across all the three channels
of the colored image and applying heuristic-based methods.
This is an important step in image segmentation and depth-
estimation.

Morphological operations are used to detect and emphasize
the presence of particular shapes and frames from an image
and are often used to de-noise an image before clustering.

Super-resolution is a set of techniques which aim to enhance
the resolution of an image. Common techniques are based on
the use of ML-based methods which interpolate the features
from the low-resolution image. Zooming small images often
results in pixelated images which often result in the lack
of high frequency components. This method is particularly
useful to enlarge images captured from cameras with limited
resolutions.

This project has been done in three parts: edge detection,
morphological operations, and super-resolution, and have been
combined in a single GUI application for real-time use on
images, with the functionality to browse and save images, as
well as undo the transformations.

II. BACKGROUND AND PRIOR WORK

A. Edge Detection

Edge detection has been tried using several methods in the
past, with techniques such as Marr-Hildreth Algorithm and
Canny Edge Detection Algorithm, apart from relatively less
complex techniques such as gradient-based methods using Pre-
witt or Sobel operators. In this project, we have implemented
two of these, namely the Canny Edge Detection algorithm
and the simple thresholding gradient method of edge detection
and the mathematics involved in the two techniques. The
overview of these methods, with the mathematical details
behind Canny’s algorithm have been presented as follows.

1) Marr-Hildreth Algorithm: This is an alternative tech-
nique which has been tried in the past. It was designed by
David Marr and Ellen Hildreth in 1980, the details of their
experiments can be found in [1]. The technique involves
computing the Laplacian of the Gaussian (LoG) kernel hence
defining a new ”LoG kernel” and convolving it with the input
image. The zero crossings of the convolution result are then
obtained to determine the location of edges in the original
image. This was one of the earliest successful techniques in
edge detection.

2) Canny Edge Detection Algorithm: This algorithm was
designed by John Canny in 1986, the details of which can
be found in [2]. Although the exact details of the algorithm
may vary between multiple implementations, the general idea
remains the same. The exact computational steps of the
algorithm (coded from scratch using the NumPy and SciPy li-
braries of Python) followed in this project have been described
here:

1) Image Smoothing: We convolve the image f(x, y) with
a Gaussian kernel to lessen sudden unwanted changes

in intensity between two pixels leading to a shoot in
gradient values.

fs(x, y) = G(x, y) ∗ f(x, y) (1)

where f(x, y) takes the values of R(x, y), G(x, y) and
B(x, y) one after the other

2) Gradient Computation: Since we are working with color
images, we need to incorporate the three channels R,G
and B into the computation.

gxx = |∂R
∂x

|2 + |∂G
∂x

|2 + |∂B
∂x

|2 (2)

gyy = |∂R
∂y

|2 + |∂G
∂y

|2 + |∂B
∂y

|2 (3)

gxy = |∂R
∂x

||∂R
∂y

|+ |∂G
∂x

||∂G
∂y

|+ |∂B
∂x

||∂B
∂y

| (4)

θ(x, y) =
1

2
tan−1(

2gxy
gxx − gyy

) (5)

Fθ(x, y) = {1
2
[gxx+gyy+(gxx−gyy) cos(2θ(x, y))+

2gxy sin(2θ(x, y))]}
1
2 (6)

where θ(x, y) is the direction of maximum
rate of change of the vector c(x, y) =
[R(x, y) G(x, y) B(x, y)]T and Fθ(x, y) is the
rate of change of c(x, y) in the direction θ(x, y).

3) Non-maxima suppression:
• Depending on θ(x, y) assign a direction to the

gradient for each pixel out of four possible direc-
tions: Vertical, Horizontal, +45◦, −45◦ as shown in
Figure 1. Let this direction be d.

• If the gradient at a particular pixel is less than one
of both of the neighbors of the point (x,y) along
direction d, assign GN (x, y) = 0, otherwise assign
GN (x, y) equal to the gradient value.

Fig. 1. The angle ranges depending on which the direction d is assigned.
(Reference: Page 731, Digital Image Processing by Gonzalez and Woods,
2002)

4) Hysterisis Thresholding: This takes two parameters TH

and TL which are the higher and lower threshold values.
The pixel values are changed as follows:

• If GN (x, y) ≥ TH , assign value 255 to that pixel.
This is then a ”strong pixel” which means that it has
a strong chance of being on an edge in the image.

• If TH > GN (x, y) ≥ TL, assign some temporary
value between 0 and 255 (say 20), to the pixel. This
is then a ”weak pixel”.

5) Connectivity Analysis: This technique is to iterate over
the image, and resolve the weak pixels into either a
strong pixel (an edge point) or a non edge point. The
method used here is 8-connectivity, wherein the new
value assigned to a weak pixel becomes 255 if there
is a strong pixel in the 3x3 box with this pixel at the
centre, and 0 otherwise. Thus this final technique gives
a set of points which correspond to edges in the original
image, thus completing the algorithm.

3) Thresholding Gradient Method: This method is rela-
tively simple compared to the Canny Edge Detection Algo-
rithm. The first two steps are same as in the Canny Edge
Detection Algorithm (smoothing and computing the gradient:
equations 1 to 6). However, here we simple define a threshold
value T and process the gradient Fθ(x, y) of the image. If the
gradient magnitude is above the threshold T , a value of 255
is assigned, and if it is below the threshold, a value of 0 is
assigned. In other words, it is a simple binary thresholding of
the gradient image.

B. Morphological Operations

Morphology is a theory and a set of techniques which
deals with the geometrical structures of various features in an
image using the language of set theory. Various morphological
operations such as erosion, dilation, opening, closing, convex
hull, thinning, thickening, etc are used independently as well
as in combinations to develop algorithms for shape-oriented
tasks in images such as hole filling or boundary detection.
In this project we have coded the two most basic of these
operations namely dilation and erosion, the explanations of
which are presented in this section. To understand them, we
need to define two preliminaries: reflection of a set about its
origin and translation of a set by a point z.

• The ”reflection” of a set B about its origin is defined as
B̂ = {w | w = −b, for b ∈ B}

• The ”translation” of a set B by point z = (z1, z2) is
defined as (B)z = {c | c = b+ z, for b ∈ B}

Let A and B be two sets in 2. Here, we want A to be our
image (a 2-D array of pixel values) and B to be a ”structuring
element”.

1) Dilation: The dilation of A by B is defined as A⊕B =
{z | (B̂)z ∩A ̸= ϕ}. It consists of all displacements z
such that B̂ overlaps with at least one element of A.

2) Erosion: The erosion of A by B is defined as A⊖B =
{z | (B)z ⊆ A}. It consists of all displacements z such
that (B)z is entirely contained in A.

Fig. 2. Comparison of Blocks (Ref: [4])

C. DL based Super-resolution

In deep neural networks, one often encounters the notorious
problem of vanishing gradients which can inhibit learning
and result in great deviations of results. The following three
techniques are commonly used to tackle this issue.

1) Residual Learning in Neural Networks: Consider a set
of neural network layers denoted by a function f(·). If fres(·)
was to denote a residual block, the its output is of the form

fres(x) = f(x) + x

This addition of input and output is realised by appropriately
padding ’x’ such that x and f(x) are of the same dimensions.
The weights of the next layer act (or convolve) to the net sum
of f(x) + x. This means

g(fres(x)) = W1 ∗ (f(x) + x)

2) Skip-connections: A skip-connection is similar to a
residual connection, except that the input is not added but
concatenated to the output. In effect, if x is an input to a layer
f(·), then the output of the next layer g(·) is

g(·) = W1 ∗ f(x) +W2 ∗ x

Since the weights used for x and f(x) are different, they
needn’t be of the same dimension.

3) Dense Block: A dense block is a set of layers in which
the output of a layer is ”skip-connected” to all subsequent
layers. Fig 2 shows all the three blocks in comparison.

III. DATA AND METHODOLOGY

A. Edge Detection

The two edge detection techniques we implemented were
Canny Edge Detection and Thresholding Gradient method.
To compute the gradient in each we used the 3x3 Sobel
operators for edge detection in the x and y directions sep-
arately. Convolving these operators with an image gives us
the gradient directly for a grayscale image, while for a
three-channel RGB image, we need to convolve them with
each of the channels and use the formulae presented in the

Fig. 3. Residual Dense Network (Ref: [4])

Fig. 4. Residual Dense Block (Ref: [4])

last section. After computing the gradient, the thresholding
gradient method simply involves binary thresholding about a
user defined threshold, whereas the Canny detection method
involves additional processing for non-maxima suppression,
hysterisis thresholding and connectivity analysis. For the im-
plementation we primarily used the NumPy library, alongwith
the ”convolve2d” function from the ”signal” module of the
SciPy library.

B. Residual Dense Network for SR

The network architecture described in [4] is a 4-part col-
lection of the following modules: shallow feature extraction,
residual dense blocks, global feature fusion and up-sampling
(See Fig 3). Input to each layer is padded appropriately such
that the output is a scaled version of the input image.

1) Shallow Feature Extraction: This module consists of two
convolution layers which learn high-level features from the
image. The output of the first layer (F−1) is used for global
residual learning, while the output of second shallow layer
(F0) is used as input to the following residual blocks. The
number of features learned by the shallow blocks is denoted
as G0.

2) Residual Blocks: The power house of this architecture is
a residual dense block. This is a combination of the previously
discussed blocks. Output from each layer is bypassed to all
subsequent layers, and the output is then added to input for
residual learning (see fig 3). The number of features learned by
each layer in the block is called growth rate and is denoted by
G. The number of convolution layers in the block is denoted
as C. The final step, in which the residue is added to the
input is called Local Feature Fusion. It is a ”fusion” of the
local features learned by the block and the input features to
the block. This enables the following blocks/layers to fully
utilize the local features from all previous blocks.

3) Global Feature Fusion: This form of skip-connection
is applied across all the residual blocks by appending their
outputs. The concatenation of residual-blocks is fed to a 1×1
convolution layer which converts the features from G to G0.
The output of layer F−1 is then added as residual connection.

4) Upsampling: The upsampling layer is required to up-
scale the coarse resolution features to interpolate and scale the
final image by the scaling factor. The result of the upscaling
layer is a 3-channel output with dimensions that n times that
of the input image (n being the scaling factor).

IV. EXPERIMENTS AND RESULTS

We have presented some sample images which we obtained
by using our coded techniques on images. For edge detection,
it is seen that for natural images, the Canny edge detection
algorithm works better than the thresholding gradient method
as in Figures 5 and 6, in the sense that it includes only the
most relevant pixels in the set of edge pixels. However for
images in which the intensity remains constant over a long
range such as cartoon images, like Figure 11, it is seen that
the thresholding gradient algorithm performs better. This might
be attributed to the fact that the gradient if non zero does have
significant magnitude in case of non-natural images and hence
the thresholding algorithm succeeds in catching these pixels,
while the Canny algorithm rejects a few of them as weak pixels
and fails to give a continuous edge.

The output of the edge detectors can be dilated using the
morphological dilation tool, in order to display the edges more
prominently. Significant improvement is seen in the output of
the Canny Edge detector after dilation.

Fig. 5. An image of a brick wall and the corresponding outputs using Canny
Edge Detector and Thresholding Gradient. The threshold values for Canny
detector are Th = 50, Tl = 25, and that for the thresholding gradient method
is 50.(Image Ref: https://unsplash.com/photos/rhaS97NhnHg)

Fig. 6. An image of a bird and the corresponding outputs using Canny Edge
Detector and Thresholding Gradient. The threshold values are same as in the
previous image.
(Image Ref: https://in.pinterest.com/pin/19281104631420541/)

To demonstrate the use of the morphological operations
independently, figures 9 and 10 have been presented. Erosion
shrinks the white parts of the image while dilation thickens

Fig. 7. The resulting images after applying dilation using a 5x5 square struc-
turing element.(Image Ref: https://in.pinterest.com/pin/19281104631420541/)

Fig. 8. An image of a cartoon on which the thresholding gradient
method seems to perform better than Canny Edge Detection method.
(Image Ref: https://www.snapdeal.com/product/asian-paints-chhota-bheem-
and/643904791025)

them, and vice versa for the black parts, as is expected from
the definitions of these operations.

The results of Super-resolution can be seen in Fig. 11. The
central image dimensions were reduced 4 and then re-scaled
using bicubic interpolation. The amount of blurring is a sign of
the loss of information. Fig. 11 (c) is the result of passing the
low-resolution image through the trained neural network. The
text on the top of the yellow umbrellas has been considerably
restored.

V. LEARNING, CONCLUSIONS, AND FUTURE WORK

Thus, we have presented the theory behind and utility of
edge detection, morphological erosion and dilation, and super-
resolution. These techniques and their combinations provide
interesting ways to process and enhance images, according to
requirement.

This project was a great learning experience for us. We
got an opportunity to implement some of the techniques we
learnt theoretically, in a practical way. We got an overview of
these and related techniques and implementing them helped
us understand them in a better way.

With the advent of deep learning, future work in images is
greatly focused on developing better models for accomplish-
ing tasks such as image segmentation, object detection, etc.
However, traditional methods still hold significance for com-
plementing machine learning, for tasks such as pre-processing
of images. Future work in edge detection can be towards

Fig. 9. The effect of morphological operations on the thickness on the
white parts. (Image Ref: https://www.wallpaperflare.com/white-text-on-black-
background-typography-artwork-wallpaper-244149)

Fig. 10. Morphological operations on text. Erosion causes white
parts to shrink while dilation does the opposite. (Image Ref:
https://stackoverflow.com/questions/7392585/how-to-display-text-with-
two-color-background)

developing more such algorithms, perhaps with the use of
different kernels or modification in a particular step.

A major disadvantage of using the present neural network
for super-resolution is the huge number of parameters. This
is quite evident in the running time taken by our GUI to
produce the scaled images. Another approach that can be used
for super-resolution is the use of GANs. The load of learning
is distributed between two sub-models called the generator and
the discriminator. Finally, it is only the generator that is used
in deployment. A sizeable learning point from this project,
for our team, is our first review and reproduction of a neural
network architecture. Prior to this, none of our members had
coded a neural network solely on the basis of its understanding
from its research paper. We participated in long discussions
and collectively understood the architecture on our own.

CONTRIBUTION OF TEAM MEMBERS

Shreyas Nadkarni: Programmed the Canny Edge Detector and
gradient computation, Erosion, Dilation and combined them
into the GUI
Tushar Nandy: Reviewed papers. Coded the neural network for
super-resolution, trained it, and combined the testing code of
the super-resolution part with the GUI. Also made the project
video.
Vinamra Baghel: Reviewed papers on Superresolution and
edge detection, helped in coding the GUI and drafting the
report.

ACKNOWLEDGEMENTS

We thank Prof. Amit Sethi, course instructor for EE610:
Image Processing for giving us the opportunity to do this

Fig. 11. (a) Original Image (b) Bicubic Degraded (c) Super-resolution
(Image Ref: [6])

project and complement the theoretical knowledge gained
through this course with some practical implementation of
techniques. His guidance and the learning obtained from the
course have been instrumental towards this project. We also
thank the teaching assistants Gouranga Bala, Nikhil Cherian
Kurian, Sachin Yadav, Anubhav Goel, Rajat Kumar Panigrahi,
Abhishek Rajawat, Sanchi Mangulley, Ravi Kant Gupta and
Pradumn Kumar for their support to us as well as other
students in the course.

REFERENCES

[1] Marr, D.; Hildreth, E. (29 Feb 1980), ”Theory of Edge Detection”,
Proceedings of the Royal Society of London. Series B, Biological
Sciences, 207 (1167): 187–217

[2] John Canny, “A Computational Approach to Edge Detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence (Volume:
PAMI-8, Issue: 6, Nov. 1986)

[3] Digital Image Processing, Fourth Edition (2002), R. Gonzalez; R.
Woods, Pearson Publications

[4] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, Yun Fu, ”Residual
Dense Network for Image Super-Resolution”, CVPR, 2018

[5] Paszke et al, ”PyTorch: An Imperative Style, High-Performance Deep
Learning Library”, Advances in Neural Information Processing Systems
32, 8024–8035, 2019

[6] D. Martin and C. Fowlkes and D. Tal and J. Malik, ”A Database of
Human Segmented Natural Images and its Application to Evaluating
Segmentation Algorithms and Measuring Ecological Statistics”, Proc.
8th Int’l Conf. Computer Vision, 416–423, 2001

[7] Blogs and Online Sources:
• https://towardsdatascience.com/canny-edge-detection-step-by-step-

in-python-computer-vision-b49c3a2d8123
• https://stackoverflow.com/questions/57033158/how-to-save-

images-with-the-save-button-on-the-tkinter-in-python
• https://www.geeksforgeeks.org/file-explorer-in-python-using-

tkinter/
• https://stackoverflow.com/questions/10133856/how-to-add-an-

image-in-tkinter
• https://github.com/yjn870/RDN-pytorch

